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In this second of two papers on the classical-quantum correspondence of the wedge billiard, atten-
tion is focused on testing a number of quantization schemes based on the Gutzwiller periodic-orbit
theory. To begin with, accurate values of the energy eigenvalues of the Schrédinger equation for
the 49° wedge and the 60° wedge have been calculated by means of a large matrix diagonalization.
These are used to judge the success of various approaches to the problem of determining approxi-
mate semiclassical energy eigenvalues, knowing only the characteristics of the periodic orbits of the
classical system. First, it is shown that the periodic-orbit sum of the Gutzwiller trace formula is not
absolutely convergent for either the 49° wedge or the 60° wedge. Nevertheless, the periodic-orbit
sum may be conditionally convergent. For the 60° wedge, a calculation including 1621 primitive
periodic orbits yields peaks that are close to the lowest 20 eigenvalues of the Schrodinger equation.
Results for the 49° wedge are less successful, however. It is shown that the infinite families of
primitive periodic orbits with nearly the same action, described in the preceding paper, cannot be
treated in the usual way by the stationary-phase approximation. Finally, a number of quantization
rules based on the staircase function and on the zeros of the dynamical ¢ function are studied. The
Riemann-Siegel look-alike equation is found to give good results for the lowest 20 energy eigenvalues
of the 49° wedge, but misses several pairs of eigenvalues over the range of the next 30 eigenvalues.
However, the smoothed version of this equation, formulated by Berry and Keating, gives good results
for all the energy eigenvalues over the range of the lowest hundred eigenvalues. Even better results
are found when the functional equation is combined with the dynamical ¢ function expressed as a
simple product over about a thousand primitive periodic orbits. Surprisingly, the best results of all
are obtained from the zeros of Bogomolny’s functional determinant making use of only 16 irreducible
orbits.
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I. INTRODUCTION

This paper reports a study of the classical-quantum
correspondence for a classically chaotic system called the
wedge billiard. The system was described in the pre-
ceding paper (to be referred to as I) which was mainly
concerned with the periodic orbits of the classical motion.
It is known that if the wedge angle ¢ is greater than 45°,
the classical system exhibits hard chaos, meaning that
a positive Lyapunov exponent exists for every classical
trajectory and all the periodic orbits of the system are
unstable. Our main interest will be in exploring a vari-
ety of ways of obtaining accurate energy eigenvalues of
the quantum system from a detailed knowledge of the
primitive periodic orbits of the classical system.

The indispensable tool for carrying out this study is
the Gutzwiller trace formula for the spectral density [1,
2], together with relations derived from it such as the
spectral staircase function and the dynamical ¢ func-
tion. In an earlier paper on the wedge billiard [3] we
derived a damped sine or cosine Fourier transform of the
Gutzwiller relation and showed that the quantum energy
eigenvalues can be used to obtain quantitative informa-
tion about the periodic orbits of the classical system.
Here, however, we focus our attention on finding the best
way to proceed in the opposite direction, from the clas-
sical periodic orbits to the quantum energy eigenvalues.
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Our work is similar to the detailed investigations of other
nonintegrable Hamiltonian systems—the anisotropic Ke-
pler problem [4-7], the Hadamard-Gutzwiller model for
a particle moving on a surface of constant negative cur-
vature [8-10], and the hyperbola billiard [11-14].

The plan of the paper is as follows. In order to judge
the success of the various approaches described later in
the paper, one needs to have accurate values for the en-
ergy eigenvalues of the quantum system. Our method
of calculating these eigenvalues of the time-independent
Schrédinger equation is described in the next section. In
the following section we present the distributions of the
energy spacings of the 49° and 60° wedges and compare
them with the distribution for a Gaussian orthogonal en-
semble. In Sec. IV we show that the Gutzwiller periodic-
orbit sum is not absolutely convergent for either the 49°
wedge or the 60° wedge. Nevertheless, when the sum is
truncated at one or two thousand primitive periodic or-
bits, it is found to give peaks lying close to the first 11
eigenvalues of the 49° wedge and the first 20 eigenval-
ues of the 60° wedge. The effects due to infinite fam-
ilies of primitive periodic orbits with nearly the same
action are discussed in Sec. V, where it is shown that
such families cannot be treated by the stationary-phase
approximation in the usual way. In Sec. VI we consider
a quantization rule based on the staircase function ob-
tained by integrating the Gutzwiller expression for the
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spectral density [15]. Section VII introduces the dynam-
ical ¢ function [16-21]. The results of calculations of the
approximate energy eigenvalues are reported for several
quantization schemes, including unsmoothed [20, 21] and
smoothed [22] versions of the Riemann-Siegel look-alike
equation, the simple product form combined with the
functional equation [6], and Bogomolny’s approach based
on a quantum Poincaré surface of section (PSOS) [23,24].
The results are compared and discussed in the final sec-
tion.

II. SOLUTION OF THE SCHRODINGER
EQUATION

A complete description of the quantum particle in
the wedge is provided by the eigenvalues and eigenfunc-
tions of the two-dimensional Schréodinger equation, with
the potential V(z,y) = y. (Units are chosen so that
m = k = 1.) Consistent with the hard reflections of the
classical billiard by the walls of the wedge, the bound-
ary conditions for the quantum system are that the wave
function ¥(z,y) goes to zero at the wedge boundary lines
z = 0 and y = (cot ¢o)z. (In this section we shall denote
the wedge angle by ¢o instead of ¢.)

After this work was completed we learned of the doc-
toral thesis by Wittek [25] in which an elegant way of
solving the Schrodinger equation for the wedge billiard
is described. Wittek expands ¢ (z,y) in products of Airy
functions, one member of each product being designed to
be zero along the tilted wall of the wedge. Imposing the
boundary condition that ¥(z,y) = 0 at N points along
the vertical wall leads to a determinantal equation for the
energy eigenvalues: This appears to be a natural way of
obtaining the energy eigenvalues and eigenfunctions of
the wedge billiard. It enabled Wittek to calculate the
first 250 eigenvalues as a function of the wedge angle to
high accuracy.

Our method of solving the Schréodinger equation for
the wedge billiard, while not as efficient as Wittek’s, is
nevertheless able to give highly accurate results. Intro-
ducing polar coordinates (p, ¢), with the wedge bound-
aries at ¢ = 0 and ¢ = ¢, we look for solutions of the
Schrédinger equation of the form

b(ps®) =Y ctmPr(p) B (9), ey
I,m
with
®,.(¢) = (2/450)1/2 sin(mmd/po), m=1,2,..., Mmax-
(2)

The functions ®,,(¢) clearly ensure that the boundary
conditions are satisfied. We have chosen the radial func-
tions to have the form

}Dl(p) = [2/(PP0)]1/2 Sin(lﬂ-p/pOL l= 1,2,..., lmax- (3)

Here po is effectively a radial cutoff distance, since this
form forces the wave functions to be zero at p = pg. Both
the @,,(¢) and the P;(p) (with the weighting function p)
are orthonormal sets of functions.

With the above choice of basis functions, the cal-
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culation of the eigenvalues FE; and the eigenfunctions
¥;(p, $) proceeds in the usual way. It is a straightfor-
ward matter [26] to calculate the matrix elements of the
Schrédinger operator in the basis P;(p)®,,(¢). The eigen-
values of the resulting Hamiltonian matrix have been
calculated on a Cray computer using 4900 basis func-
tions. The numerical accuracy of the solutions depends,
of course, on how lax, Mmax, and the cutoff distance pg
are chosen.

Let us suppose that, for a specified wedge angle ¢o, we
wish to obtain accurate energy eigenvalues up to some
maximum energy Fnax. A classical particle of energy
Emax can rise in the potential V(z,y) = y to the height
Yy = Eax. If the quantum eigenfunctions are to be accu-
rately represented up to this height, it is clear that the
value of py must be at least as large as

Po = Emax/ cos ¢o. (4)

Now the maximum value of the radial kinetic energy,
which occurs when ! = lay, is equal to (1/2)(lmax7/po)?2.
Equating this to Fax we obtain the following approxi-
mate criterion for choosing lnax:

i V2 3/2
ax X ——FE2/4
lm X s EO max (5)

Finally, assuming that the detail to be resolved in the
angular direction is about the same as in the radial di-
rection, we choose Myax = lmax-

As a test case let us consider the 45° wedge, or, equiv-
alently, the odd-parity solutions of the symmetric 90°
wedge. For this angle the Schrédinger equation separates
into two one-dimensional equations, each having the po-
tential V(z) = z/4/2. It is known [27] that the semiclas-
sical eigenvalues of the one-dimensional equation, given
by the Einstein-Brillouin-Keller (EBK) quantization rule,
are in excellent agreement with the exact eigenvalues, ex-
cept for the lowest few eigenvalues. With the ten lowest
eigenvalues corrected (given by the zeros of the Airy func-
tion) the EBK semiclassical results give an accurate stan-
dard with which to compare the matrix calculation. If
we choose lax = Mmax = 65, the approximate equations
above give Fpax = 22 and po = 31. The Thomas-Fermi
contribution to the spectral density, to be described in
Sec. VI, gives an estimate of the mean number of energy
eigenvalues less than E:

tan ¢
Nae(B) ~ 5 s B

(6)

With E = Enax = 22 this gives Nrp(Emax) =~ 280. Thus,
if we choose lpax = Mmax = 65 and po = 31.5, we can
expect to find good numerical accuracy for the lowest 280
eigenvalues of the Hamiltonian matrix. Comparison of
the energy eigenvalues of the 4225 x 4225 matrix with the
semiclassical results shows this expectation to be true,
although the last 20% of the eigenvalues cannot be relied
upon to differ from the semiclassical values by less than
one-third of the mean level spacing.

To determine the energy eigenvalues of the 49° wedge
and the 60° wedge we chose Lynax = Mmpmax = 70. (Each
calculation of the eigenvalues of the resulting 4900 x 4900
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matrix took about 1.25 h on a Cray computer.) For the
49° wedge the above equations yield F.x =~ 22 and
po = 33, while Eq. (6) gives Npp(Fmax) =~ 317. For
the 60° wedge we find Eax =~ 18 and po =~ 36, while
Nrp(Emax) = 278. Reducing these values of Nrr(Emax)
by 20%, we are confident that the calculated energy
eigenvalues are in error by less than one-third of the mean
spacing between the levels, up to about the 250th level
for the 49° wedge and the 220th level for the 60° wedge.

III. ENERGY LEVEL SPACINGS

Since we have obtained accurate values for the lowest
200 to 300 energy eigenvalues of the 49° wedge and the
60° wedge, it is of considerable interest to calculate the
distribution of level spacings. In terms of the variable s
defined below, it is expected that for the quantum analog
of a classically integrable system, such as the 45° wedge,
the level spacings have a Poisson distribution, P(s) =
e *, as suggested by Berry and Tabor [28] for a generic
system (not a harmonic oscillator). On the other hand,
it has been found [29, 30,10] that the quantum analogs of
classical systems exhibiting hard chaos and having time
reversal symmetry generally have a distribution of level
spacings that is well represented by

P(s) = gsexp(—wsz/4). (7

First introduced by Wigner in connection with the dis-
tribution of energy level spacings in nuclei, this function
describes the distribution of spacings obtained from the
eigenvalues of real symmetric random matrices. In ran-
dom matrix theory these matrices constitute the Gauss-
ian orthogonal ensemble (GOE). Thus, it is of interest to
see whether the energy eigenvalues of the 49° wedge and
the 60° wedge exhibit GOE statistics.

The variable s in the above distributions is defined
so as to make the mean spacing between levels equal
to unity. The mean spacing (AE) at energy E is
given by the inverse of the Thomas-Fermi density of
states, drp(E), discussed in detail in Sec. VI. Thus,
(AE)dtr(E) = 1. If we define the variable s by

s = EdTF(E)/3, (8)

then, since the leading term in drr(E) varies as E?2 [see
Eq. (23)], it follows that, to a good approximation,

As = Sj4+1 — S5
d

~ 4 (Edrr(E) ~ .
~ dE( 3 s, AE ~ AE dre(E;),  (9)

where, in this equation, AFE = E; 1 —FE;. Averaging over
a suitable set of levels on both sides leads to (As) = 1,
which is the desired result.

Figure 1 shows a histogram calculated from the first
5000 level spacings for the 45° wedge. For this integrable
case, accurate values for the energy eigenvalues were cal-
culated as outlined in the preceding section. As expected,
the histogram is very well fitted by the Poisson distribu-
tion, shown as the dashed curve in the figure. A similar
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FIG. 1. Histogram of the level spacings for the 45° wedge,
calculated from the lowest 5000 semiclasssical energy eigen-
values. The dashed curve is the Poisson distribution, P(s) =

—s

[

result has been obtained for the 45° wedge by Wittek [25].
In contrast to this case, Figs. 2 and 3 show histograms
of the level spacings for the first 300 eigenvalues of the
49° wedge and the first 250 eigenvalues of the 60° wedge.
The dashed curve in each figure is the Wigner distribu-
tion, Eq. (7). Although the number of levels is not large
enough to give good statistics, it is clear in both cases
that the spacings are well described by the GOE dis-
tribution. Compared with the integrable case, there are
very few level spacings with small values of s, showing the
“level repulsion” expected for these quantum analogs of
classically chaotic systems. Wittek [25] has also found
approximately GOE behavior for the energy level spac-
ings of eleven different wedge angles between 47° and
67°.
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FIG. 2. Histogram of the level spacings for the 49° wedge,

calculated from the lowest 300 eigenvalues of the Schrodinger
equation. The dashed curve is the Wigner distribution,
Eq. (7).
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IV. THE GUTZWILLER TRACE FORMULA

Our starting point for studying the classical-quantum
correspondence in a classically nonintegrable system is
the Gutzwiller trace formula [1, 2]. Derived in the semi-
J

cos{k[Sy (E)/h — vym/2]}
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classical approximation to quantum mechanics, the trace
formula relates the energy eigenvalues of the quantum
system to the periodic orbits of the classical system. For
a classically chaotic system in which every periodic orbit
is unstable, the form of the trace formula is

Z&E E;) = drp(E) +ZZ wh

vy k=1

where v labels the primitive periodic orbits in the clas-
sical system, T.,(E) is the period of the orbit, S,(E) =
$p - dq is the classical action, v, is the Maslov index,
u. is the stability exponent for one traversal of the orbit,
and o, is the sign of the trace of the monodromy matrix
for one traversal of the orbit. Note that the two periodic
orbits setting out in opposite directions from an arbitrary
point on the orbit are counted as one contribution in the
sum over . The sum over k counts multiple traversals of
a given periodic orbit. drp(E) is the smoothly varying
“Thomas-Fermi” or “Weyl” contribution to the density
of states, which will be described in Sec. VI. Further de-
tails concerning Eq. (10) and its derivation may be found
in Refs. [1, 2, 13, and 26].

The preceding paper gave a detailed description of the
classical motion of the wedge billiard. It was shown that
J

exp(ku,/Z) — ok exp(—ku,/2)’

(10)

[
there is a simple scaling relation between a primitive pe-
riodic orbit at energy F and the corresponding orbit at
any other energy, and that the topology of each orbit
does not change as F varies. It was convenient to carry
out all the calculations of the primitive periodic orbits at
energy E = 1. Then the action and period at energy FE
are given by

S,(E) = E¥25,(1), (11)

7, (E) (12)

while the Maslov index v, the stability exponent u.,, and
the sign of the trace of the monodromy matrix o, are
independent of the energy. Hence, for the wedge billiard
with wedge angle ¢ greater than 45°, the trace formula
becomes

= El/zT’r(l)

E1/2T (1) cos{k [E®/28,(1)/h — vym/2]}
Z&E E;) _dTF(E)+ZZ exp (ki 2) — oF exp(—kur/2)

Y k=1

It was pointed out by Gutzwiller [16] that, in the case
of a general nonintegrable system, the periodic orbit sum
may not be absolutely convergent because the number of
primitive periodic orbits with orbit length less than L ap-
pears to grow exponentially with L. An analysis of the
periodic orbit sum has been carried out for homogeneous
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FIG. 3. Histogram of the level spacings for the 60° wedge,
calculated from the lowest 250 eigenvalues of the Schrédinger
equation. The dashed curve is the Wigner distribution,

Eq. (7).

(13)

I

potentials by Eckhardt and Aurell [31] and for force-free
billiards by Sieber and Steiner [32]. Allowing the energy
FE to be complex, they arrived at similar conditions guar-
anteeing absolute convergence of the sum. These have
the form

const x Im(E%) > 7 — X/2, (14)

where 7 is the topological entropy and X is the mean
Lyapunov exponent averaged over suitably long periodic
orbits. [See Secs. V and VI of paper I for definitions
of these quantities. Strictly speaking, in (14) 7 should
be defined through the number of periodic orbits with
periods between T and T +dT being given by exp(7T)/T
as T — oo.] In the above inequality the exponent « is
1/2 for force-free billiards and is equal to 1/k+1/2 for a
particle moving in a homogeneous potential of degree k.
(For the wedge billiard, K = 1 and @ = 3/2.) Numerical
studies of the convergence of the periodic orbit sum as a
function of orbit length L reported by Sieber [13] for the
hyperbola billiard led him to conclude that the sum is
very likely conditionally convergent, and might even be
absolutely convergent for real values of E.

Although the topological entropy cannot be defined for
the wedge billiard because of the existence of infinite fam-
ilies of primitive periodic orbits having nearly the same
action (or period), we showed in paper I that, by anal-
ogy, one can define a word length entropy 7,,. [Letting
N(n) denote the number of primitive periodic orbits of
word length n, we defined 7, through N(n) ~ exp(7,n)
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as n — oo.] This suggests that we analyze the conver-
gence of the periodic orbit sum for the wedge billiard in
terms of n.

First, we note that the convergence of the sum will not
be affected if the factor involving the stability exponent in
Eq. (13) is replaced by exp(—ku,/2). (Recall from paper
I that, to a good approximation, the value of u, increases
linearly with n.) Reverting from the cosines in Eq. (13)
back to exponentials, we see that the convergence of the
periodic orbit sum depends on

00 a1/2
S B e ikp2s, (1)/5 - vym/2)

¥ k=1
—ku,/2}. (15)

‘We now change the sum over v to a sum over the word
I

M]3

n=1k=1

o0

3" N(n)5(n) exp{ik[E¥/?5(n) /A — p(n)m/2] — ka

length n of the primitive periodic orbits, making use of
the following results from paper I:

S(n) L 3T, (16)
v(n) AL AT (17)
a(n) YL GuT (18)

where the constants a,, a,, and a, are the slopes of the
appropriate straight lines in Figs. 10, 12, and 13 of pa-
per I. Recalling that T,(1) = (3/2)S,(1) and ignoring
an overall constant factor, we write the double sum in
Eq. (15) as being approximately equal to

(n)/2}

= Z S(n) Z exp{ikn[Re(E% ?)a,/h — a,7/2]} exp{n[r, — kIm(E*?)a,/h — ka,/2]}. (19)

k=1

Clearly, absolute convergence is assured if

kIm(E*?)a, + ka,/2 — T, >0  forallk >1. (20)

When E is real, the key condition is (since a,, is positive)

/2 — Ty >0 (E real). (21)

The slopes of the straight lines in Figs. 9 and 13 of paper I
have the following values: for the 49° wedge, a,, = 0.474,
Ty = 0.368, giving a,/2 — 7, = —0.131; for the 60°
wedge, a, = 0.635, 7, = 0.510, giving a,/2 — 7, =
—0.193. Thus, in neither case is the criterion for absolute
convergence satisfied for real E.

Despite this failure to converge absolutely, the periodic
orbit sum may, however, be conditionally convergent for
real F, since the terms in the double sum in Eq. (13)
enter with either sign, allowing a systematic cancella-
tion to occur. Of course, the answer obtained from a
given computation will depend on how the summations
are truncated. Nevertheless, it is interesting to calculate
the right-hand side of Eq. (13) as a function of energy
using a restricted number of primitive periodic orbits,
and compare the resulting peaks with the eigenvalues of
the Schrédinger equation. [Since the Thomas-Fermi term
drr(E) is slowly varying it has been omitted in the fol-
lowing.]

Such a calculation for the 49° wedge is shown in Fig. 4.
The sum over v included 1048 primitive periodic orbits
having actions less than 12.0 and word lengths < 19. The
sum over k was taken up to k = 9, by which point the con-
tributions were always negligible. It should be noted that
the abscissa was chosen to be Edtg(E)/3 rather than E
since this has the effect of making the mean spacing be-
tween the energy levels equal to unity. [See Eq. (9).]
From a careful examination of the figure one sees that
peaks are situated close to the positions of the first 11
eigenvalues, although at the fourth and seventh eigenval-

[
ues there occur two very narrow peaks of nearly the same
height. Spanning the twelfth and thirteenth eigenvalues
are three small peaks. Above that, some peaks occur in
the right positions, but others do not. Moreover, several
pairs of close eigenvalues are not resolved by the periodic
orbit sum. Overall, the agreement between the classi-
cal and quantum calculations is not very satisfactory. It
should be added that if only 271 primitive periodic orbits
are included in the sum, the agreement is almost as good
as in Fig. 4, although some features are slightly less well
resolved.

A similar calculation for the 60° wedge containing 1621
primitive periodic orbits with actions less than 19.4 and
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FIG. 4. Comparison of the exact eigenvalues of the

Schrédinger equation for the 49° wedge (dashed lines) with
the results of the Gutzwiller periodic orbit sum (solid line).
The sum included 1048 primitive periodic orbits with actions
less than 12.0 and word lengths n < 19.
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word lengths < 15 (plus some of length 16) is shown in
Fig. 5. In this case the periodic orbit sum accurately
determines the positions of the first 20 eigenvalues. Be-
yond that point, the 21st peak is small and pairs of close
eigenvalues are not well resolved, although the resolu-
tion of these higher energy peaks is distinctly better than
when only 257 primitive periodic orbits are included in
the sum. It is evident that the periodic orbit sum is much
more successful for the 60° wedge than for the 49° wedge.
This may be related to the fact that there is considerably
less pruning of orbits for the 60° wedge.

Why is the agreement between the classical and the
quantum calculations not better than it is shown to be in
Figs. 4 and 5? One reason is, undoubtedly, the truncation
of the sum over primitive periodic orbits and the fact that
if the sum is convergent at all, it is only conditionally
convergent. Another reason is the existence of families
of primitive periodic orbits with very nearly the same
action. This feature will be analyzed in the next section.

V. FAMILIES OF PRIMITIVE PERIODIC
ORBITS

It was shown in paper I that when the wedge angle
is greater than 45°, there occur many families of primi-
tive periodic orbits having very nearly the same action.
Since the members of a given family become closer and
closer together in the phase space as the word length n
increases, there may well come a point at which there is
a failure of the stationary-phase approximation used in
deriving the Gutzwiller trace formula. The stationary-
phase approximation requires that when variations in the
paths are made away from a primitive periodic orbit, the
accompanying changes in the action are large compared
to h, thus giving rise to an efficient cancellation of the
contributions from all the paths for which the action is
not an extremum.

Let us examine the situation in more detail. For a
particular family of primitive periodic orbits, the orbit of
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FIG. 5. Comparison of the exact eigenvalues of the

Schrédinger equation for the 60° wedge (dashed lines) with
the results of the Gutzwiller periodic orbit sum (solid line).
The sum included 1621 primitive periodic orbits with actions
less than 19.4 and word lengths n < 15, plus some with
n = 16.
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word length n makes a series of T bounces up the tilted
wall until it reaches its highest reflection point. We shall
denote the radial distance of the reflection point farthest
from the wedge vertex by p,,. [As n — oo, this highest re-
flection point approaches the point z = tan¢, y = 1, and
pn approaches (1+tan? ¢)!/2.] The action S,, correspond-
ing to the primitive periodic orbit of word length n is an
extremum with regard to small variations of the path.
Consequently, if a change Ap is made from p, as the
starting point for a varied path in the phase space, and if
the new path can be made to close upon itself (by varying
the component of momentum perpendicular to the prim-
itive periodic orbit n), then the first order change in the
action, 6.5, will be zero, but the second order change, §28,
will be nonzero (positive or negative). Using quadruple
precision arithmetic we have verified that the change in
the action resulting from a change Ap in the initial con-
ditions is actually proportional to (Ap)2.

_Now the key factor entering the Green’s function
G(¢",q', E) in Gutzwiller’s derivation of the trace for-
mula [1] has the form exp[i£(dq2)2/h], where, as in paper
L

=_1 6%S N 028 n 8%s 29
) 0q40q}, 0qh0qy ~ O0qh oY (22)

Here, as in Gutzwiller’s original paper, ¢, is the coordi-
nate in a direction perpendicular to the primitive periodic
orbit, while g5 and ¢j are the initial and final positions.
The partial derivatives in = are evaluated at the starting
point of the primitive periodic orbit, which we take to
be the highest reflection point on the tilted wall. From
the expression above it is clear that the Fresnel integral
resulting from the integration over dg, can be performed
cleanly when E times the square of half the range of in-
tegration over d¢, is much larger than h. However, if the
g2 separation between orbits n and n + 1 is sufficiently
small, the integrands of the Fresnel integrals for these or-
bits overlap and the stationary-phase approximation can
no longer be carried out in the customary manner.
Figure 6 shows a plot of In[=(Ap)2/h] against Inm,
where Ap = pmi1 — pm is the difference between the
highest reflection points on the tilted wall for the primi-
tive periodic orbits corresponding to m + 1 and m of the
family T*VVTTVYV of the 49° wedge. Even for the first
point of this figure, which corresponds to the difference
between the primitive periodic orbits T*VVTTVV and
T3VVTTVV, the value of £(Ap)? is only 0.3 in units of
h. By the time m = 41, the last point of the figure, it
has fallen to 0.003. Figure 7 shows a similar plot for the
family T™VVV of the 60° wedge. In this case Z(Ap)?
decreases from about 0.39 for m = 5 to 0.11 for m = 44.
The above calculations, which were performed in units
in which A = 1, show clearly that the primitive periodic
orbits in a given family become very close together and
are not separated by an appreciable barrier due to Z, de-
fined in Eq. (22). This means that in the derivation of the
Gutzwiller trace formula, the stationary-phase approxi-
mation will become invalid at some point as m increases,
although it is not clear exactly where it will fail. Note
that even if & were to have a much smaller value, in the
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FIG. 6. Plot of In[E(Ap)?] against Inm for members of
the family T"VVTTVYV of the 49° wedge, for m = 4 to 41. =
and Ap are defined in the text. The dashed line corresponds
to 2(Ap)? = 7.96/m?°,

spirit of taking the semiclassical limit, the stationary-
phase approximation would still be in trouble at some
point in each family of primitive periodic orbits of the
type we are considering.

Finally, we note that the periodic orbit sums in Figs.
4 and 5 were cut off at word lengths of 19 for the 49°
wedge and 15 or 16 for the 60° wedge. The fact that the
positions of the first 10 or 20 peaks are in reasonably
good agreement with the quantum energy eigenvalues
may be an indication that the truncated contributions
from these infinite families are not badly in error. As
Tanner and Wintgen [6] have observed for the anisotropic
Kepler problem, it is possible that a grand cancellation
occurs among the members of each family with longer
word lengths.
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FIG. 7. Plot of In[E(Ap)?] against Inm for members of
the family T™VVYV of the 60° wedge, for m = 5 to 44. E and
Ap are defined in the text. The dashed line corresponds to
E(Ap)? = 3.67/m°%3,
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VI. THE THOMAS-FERMI TERM
AND STAIRCASE QUANTIZATION

In this section we study how to use the spectral stair-
case function N(FE) to calculate approximate quantum
energy eigenvalues on the basis of the periodic orbits of
the classical system. Defined as the number of energy
eigenvalues less than or equal to E, N(FE) for the wedge
billiard is readily obtained by integrating Eq. (13) from
0 to E. In order to do this we require an accurate repre-
sentation of the Thomas-Fermi contribution drr(E).

We have calculated the Thomas-Fermi contribution
by a method similar to that described by Kac [33] in
a well-known article entitled “Can you hear the shape
of a drum?” The calculation starts from the semiclas-
sical or WKB expression for the time-dependent prop-
agator for a particle in the potential V(z,y) = y. We
then calculate an approximation to the partition func-
tion ) exp(—sE;), which is the Laplace transform of the
spectral density > 6(E — E;), by integrating the short-
time propagator over all space, putting s = it. The fol-
lowing result is obtained after taking the inverse Laplace
transform:
tang o, (1+secq)

1
E?- 1" TpY2 “§(E). 23
s t3s (E) (23)

drr(E) = 2\/27h

The first term on the right-hand side comes from inte-
grating the propagator over the domain of the wedge,
while the second term is a correction from (short) paths
in which the particle is reflected from one of the walls of
the wedge. The third term has not been derived by us,
but is suggested by a result of Pleijel quoted by Kac [33].
(Its ultimate justification is that it is essential in giv-
ing an excellent fit to the exact staircase function over a
broad range of energies, as will be described below.) It
should be added that the method we have used to calcu-
late drp(F) is similar to that employed by Steiner and
Trillenberg [34] to calculate the partition function for an
unbounded force-free quantum billiard. Further details
of our calculation may be found in the Ph.D. thesis by
Szeredi [26].

The result of integrating the left-hand side of Eq. (13)
is the exact staircase function for the quantum system:

N(E) = iG(E — E;), (24)

where, as usual, 6(z) is 0 for z < 0 and 1 for z > 0. In-
tegrating the right-hand side of Eq. (13) leads to a semi-
classical approximation to the staircase function having
the form

Nue(E) = N1p(E) + Noso(E). (25)

From Eq. (23) the Thomas-Fermi contribution is found
to be

_ tan¢
T 127h?

(1+secd) zp 1
- —. 26
3/2rh B+ 6 (26)

Nrr(FE)

The expression for the oscillating part, Nos.(E), which is
readily obtained from Eq. (13), will not be given explic-
itly here.
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Ignoring Nos.(E) for the moment, we have found that
Nrr(E) given by Eq. (26) follows the exact staircase
function very closely for the first 380 eigenvalues of the
49° wedge and for the first 280 eigenvalues of the 60°
wedge—well beyond the points at which the eigenvalues
are no longer accurate to within one-third of the mean
spacing between the levels.

To formulate a quantization rule capable of giving rea-
sonably accurate values for the energy eigenvalues, it is
necessary to add Nosc(E) to the Thomas-Fermi contri-
bution. Figure 8, for the 60° wedge, compares the exact
staircase function N(FE) with the result of calculating
Ny.(E) using 1621 primitive periodic orbits having ac-
tions < 19.4 and word lengths < 15, plus some of length
16. (A calculation with 257 primitive periodic orbits gave
almost identical results.) The figure covers the range of
the lowest 18 eigenvalues, the abscissa being chosen to be
Edrr(FE)/3 in order to make the mean spacing between
levels equal to unity. One sees that Nos(F) attempts
to chisel out the steps from the Thomas-Fermi “back-
ground,” indicated by the dashed curve in Fig. 8. How-
ever, it is not very successful in doing this, particularly for
the wider steps in the figure. For the 49° wedge, Nosc.(E),
computed with 271 primitive periodic orbits having ac-
tions < 12, is even less successful in approximating the
exact staircase.

A staircase quantization rule can now be stated: the
jth eigenvalue of the quantum system is given by

NTF(E]')—‘(-NOSC(E]') =j—1/2, 71=12,....
(27)

This rule, which has been proposed by Aurich and
Steiner [15], works very well for most of the eigenval-
ues of the 60° wedge. Occasionally, however, when there
is more than one solution to the above equation, it needs
to be supplemented by requiring that one choose the so-
lution closest to E; " satisfying Nr(EJT) = j — 1/2.
This is essential in the case of the 49° wedge if one is to
avoid ambiguity in some of the first 20 eigenvalues.

VII. THE DYNAMICAL ¢ FUNCTION

A different approach to calculating approximate semi-
classical energy eigenvalues from a knowledge of the pe-
J

exp{ik[S
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FIG. 8. Plot of the staircase function N(E) against

Edrr(E)/3 for the 60° wedge. The stepped curve was cal-
culated from the first 18 eigenvalues of the Schrédinger equa-
tion. The dashed curve is the Thomas-Fermi function Ntr(F)
given by Eq. (26). The oscillating solid curve is the semiclas-
sical approximation N,.(F) which includes the contribution
from the periodic orbit sum.

riodic orbits of the classical system is based on the dy-
namical ¢ function. First introduced in this context by
Gutzwiller [16] and discussed in pioneering papers by
Berry [17] and Voros [19], the dynamical ¢ function con-
sists of an infinite product over the primitive periodic
orbits of the system. The current interest in study-
ing various approximations to the dynamical ¢ function
for classically chaotic systems stems from the possibility
that they may have better convergence properties than
the Gutzwiller trace formula, which, as we have seen in
Sec. IV, is at best conditionally convergent.

A. Formal relations

The derivation of the dynamical ¢ function, for a sys-
tem in which all the primitive periodic orbits are unsta-
ble, starts from the expression [1,19]

~(E)/h —vym/2]}

3 gy =)+ 35 T
where [24]
* drr(E')dE'

oo E +ie — E'’
Note that Eq. (10) is obtained at once from Eq. (28) by
taking (—1/7) times the imaginary part of both sides.

Now the left-hand side of Eq. (28) can be put in the
form

. d . d
21_1)1‘1) IE In[IL;(E + ie — Ej;)] = iE In[Il; (E — Ej)].

(30)

exp(ku,/2) — ok exp(—ku,/2)’

(28)

[

After some straightforward algebraic manipulations [19,
13], and interchanging the order of the limit and the in-
tegration in the Thomas-Fermi term, the right-hand side
can be expressed in the form

{lnexp[ lWNTF(E)]}+ d an( ), (31)

where Z(E) is the dynamical ¢ function,
H H{l — oy exp[iSy(E)/h —ivym/2

—(n+1/2)u]}.

Z(E) =

(32)
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By integrating over E from 0 to E and exponentiating
the result one obtains

[1( - E/E;) = exp[—inNre(E))Z(E)/Z(0). (33)

J
From the left-hand side of this relation it is clear
that the function on the right-hand side has zeros
at the energy eigenvalues E;.  Furthermore, since
for real E the left-hand side is real, it follows that
Z*(0) exp|—irNtr(E)]Z(E) is also real. This is con-
sistent with the fact that exp[—imNyg(E)]Z(FE) is real
when F is real, a result that follows from the well known
“functional equation”

exp[—inNtr(E)|Z(E) = exp[in Nrr(E)|Z*(E). (34)

[Putting E = 0 and Ntr(0) = O in this relation shows
that Z(0) is real.] This has been proved for the dynamical
¢ function of a free billiard by Sieber and Steiner [12]. We
have adapted their proof to show that it also holds for
the wedge billiard, which has a different scaling relation
for the actions. .

We note that all the above relations are valid only to
the extent that the original Gutzwiller relation, Eq. (28)
is valid—recall its semiclassical origin in the stationary-
phase approximation—and provided none of the sums in
Eq. (28) or the infinite products in Egs. (32) and (33)
are truncated. When Z(FE) is truncated in some fash-
ion, the right-hand side of Eq. (33) can no longer be
assumed to be real [21] for real E. Nevertheless, in the
following subsections we shall often incorporate the func-
tional equation into a quantization scheme by assuming
that the approximate semiclassical energy eigenvalues are
given by the equation

Re{exp[—inNtr(E)|Z(E)} =0, (35)

with Z(FE) calculated as either a truncated Euler product
or a truncated Dirichlet series.

B. Calculations with Z(F) as a truncated product

The simplest quantization rule based on the preceding
theory comes from the observation that the right-hand
side of Eq. (33) vanishes at the zeros of the left-hand
side if Z(E;) = 0. Since in an actual calculation one
must truncate the { product at some point, its zeros will
occur at complex rather than real values of E. However,
these approximate zeros of Z(FE) may be situated close
to the real axis. If their imaginary parts are small, it is
plausible that the truncated |Z(E)|, evaluated as a func-
tion of E, will display minima near the exact eigenvalues
of the Schrédinger equation.

In Fig. 9 we show the results of calculating |Z(FE)| as
a function of the real variable E for the 60° wedge. The
calculation was performed using 1621 primitive periodic
orbits with actions < 19.4 and word lengths < 15 plus
some of length 16. For every primitive periodic orbit the
product over n in Eq. (32) was carried as far as n = 9.
As in the earlier calculations, the abscissa was chosen to
be Edrr(FE)/3 in order to make the mean spacing equal
to unity. The triangles in the figure show the positions
of the exact eigenvalues of the Schrodinger equation. Ig-

3537
I I
2 - -
g
N
O I Y- W W-V:V-V.V.V.W.W.V.V.V.V. W V. V.V.V. V.V ", W V.V NIV
| | |
0 20 40
E dw(E)/3
FIG. 9. The absolute value of the ¢ product, Eq. (32),

plotted against Edtr(E)/3 for the 60° wedge. The calcula-
tion was carried out using 1621 primitive periodic orbits with
actions < 19.4 and word lengths < 15, plus some of length 16.
The triangles show the positions of the exact energy eigenval-
ues of the Schrodinger equation.

noring the first minimum at E = 0, we see that the first
18 minima in |Z(E)| are very close to the exact eigen-
values. Beyond that point, the 19th and the 21st min-
ima are rather far from the energy axis, and subsequent
pairs of close eigenvalues are not resolved. Nevertheless,
it is interesting that a quantization rule base on picking
off the minima of |Z(E)|, subject to the condition that
|Z(E)| < 1, is quite successful for the first 18 eigenvalues.

Similar calculations of |Z(E)| as a function of energy
have been carried out for the 49° wedge using 1048 prim-
itive periodic orbits having word length < 19. The result
is the solid curve in Fig. 10. One can see that there are
two minima instead of one near the fourth energy eigen-
value, and also two “high” minima in the vicinity of the
seventh energy eigenvalue. Clearly, the results are less
satisfactory than in the case of the 60° wedge, even for
the lowest energy eigenvalues.

It is natural to ask whether better results are obtained
if use is made of the functional equation. Accordingly, we
have calculated the left-hand side of Eq. (35) as a func-
tion of energy for the 49° wedge, with Z(E) calculated
as described in the preceding paragraph. The result is
the solid curve in Fig. 11. The black dots on the en-
ergy axis indicate the positions of the exact eigenvalues
of the Schrodinger equation, and, as in the previous fig-
ures, the abscissa was chosen to be Edrp(E)/3 in order
to make the mean spacing between the energy levels ap-
proximately equal to unity. It may be seen that the zeros
of the solid curve are close to the exact eigenvalues for
the first 18 eigenvalues, and remain fairly close up to the
right side of the figure. The solid curve even manages to
predict correctly that there are two very closely spaced
zeros near the 40th and 41st eigenvalues (at the far right
of the figure). The solid curve does not miss any zeros
or introduce any spurious zeros over the energy range
encompassing the first 100 energy eigenvalues.
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For the 60° wedge there is a similar success (not shown
here), with no missing zeros or spurious zeros. Thus we
have found that the simple ¢ product, Eq. (32), taken
over about a thousand primitive periodic orbits, and
combined with the functional equation as in Eq. (35),
gives very good results for the approximate energy eigen-
values.

C. The pseudo-orbit expansion

By analogy with the Riemann ¢ function, the dynami-
cal ¢ function of Eq. (32) can be expressed as a Dirichlet
series having the form [20, 21, 12],

Z(E)=1+ Z A, exp[iSn(E)/H], (36)
where,
Su(B) = Y miSo, (), (37)

and the m; are positive integers. The coeflicients A4,, have
been derived by Berry and Keating [20] and by Sieber and
Steiner [12]:

m;(m;—1)/2

exp[—im;vy, m/2 — m;(m; — 1)u., /4]

g
N
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FIG. 10. Comparison of the product form of |Z(E)| with

the results of the pseudo-orbit expansion for |Z(E)| for the 49°
wedge. Solid curve: the product form, Eq. (32), calculated
with 1048 primitive periodic orbits with word length < 19.
Dotted curve: the pseudo-orbit expansion containing 26706
pseudo-orbits with word length < 19. The triangles show the
positions of the exact energy eigenvalues of the Schrédinger
equation.

An _ H (—1)7711'0'7‘"“ (38)
" [T lexp(ur/2) — 0%, exp(—jun,/2)]

Here n labels the pseudo-orbits, each pseudo-orbit being
made up of a unique linear combination of primitive pe-
riodic orbits in which the particular orbit ; occurs m;
times. The quantity S,(E) in Eq. (36) is the pseudo-
action for the pseudo-orbit specified by the integers m;.

The pseudo-orbit expansion for Z(F), truncated at
some point, provides a different way of approximating
the dynamical { function when one has a finite number of
primitive periodic orbits. A better form of this expansion
is the Riemann-Siegel look-alike equation [20, 21] and its
refinement to include smoothing of the cutoff [22], which
will be the subject of the next subsection. However, it is
of interest to look at the results obtained from a simple
truncation of the series.

In general, the pseudo-orbits can be arranged in order
of increasing action [S,(E) < S,4+1(F) for all n > 1],
or in order of increasing word length. For the wedge
billiard, the infinite families of primitive periodic orbits
having nearly the same action make the former scheme
impracticable. We have therefore truncated the series at
a specified word length, denoted by N. This means that
every pseudo-orbit contributing to the sum in Eq. (36)
is made up of primitive periodic orbits ; such that the
sum of their word lengths (allowing for m; repetitions
of «;) does not exceed N. As in the preceding section,
the quantization rule is simply that Z(E;) = 0, and,

Re[Z(E)exp(—inNy(E))]

g U 1 il
0 20 40
E d(E)/3
FIG. 11. The results of calculations for the 49° wedge em-

ploying the functional equation. Both curves show the left-
hand side of Eq. (35) as a function of energy. The solid curve
was calculated from the ¢ product, Eq. (32), with 1048 prim-
itive periodic orbits having word length < 19. The dotted
curve was calculated using a pseudo-orbit expansion consist-
ing of 26706 pseudo-orbits with word length < 19. The po-
sitions of the exact energy eigenvalues are indicated by the
solid circles.
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because of the truncation, the zeros E; are expected to
be complex with small imaginary parts.

Instead of searching for the complex zeros of Z(E), we
have calculated |Z(E)| for real E as a function of the en-
ergy. The dotted curve in Fig. 10 is the result for the 49°
wedge of the pseudo-orbit expansion with N = 19, there
being 26706 pseudo-orbits contributing up to this word
length. It is noticeable that the minima of the pseudo-
orbit calculation are sharper and deeper than those of the
simple product form (the solid curve in the figure). How-
ever, there are many more minima of the pseudo-orbit
calculation than there are eigenvalues of the Schrodinger
equation, the positions of which are indicated by the tri-
angles in the figure. For example, there are two minima
near the seventh eigenvalue, four minima in the vicinity
of the next three eigenvalues, four minima near the next
three eigenvalues, and so on. Thus, it appears that for
the 49° wedge the pseudo-orbit expansion does not yield
an improvement over the straight product form.

In view of this lack of success, one is led to examine
the convergence of the pseudo-orbit expansion. Because
it does not make sense to label the pseudo-orbits in or-
der of increasing pseudoactions, we break up the sum in
Eq. (36) into sets of pseudo-orbits of given word length
Tyw. A numerical analysis of all the 26706 pseudo-orbits
of the 49° wedge with n,, < 19 shows that the pseudo-
actions of word length n,, have a mean value proportional
to n,, the proportionality relation being excellent over
the range 11 < n,, < 19. Since the actions at energy E
are proportional to E3/2, we add an imaginary part to
E3/2 and examine the convergence of

oo

2_1{2 Ap exp[iSp(l)Re(Es/z)/h]

X exp[—Sp(l)Im(E3/2)/h]}, (39)

where the sum over p includes all the pseudo-orbits of
word length n,,. We now replace the pseudoactions at
word length n,, by their average value (ash)n,, where
a, is a constant (approximately equal to 0.847 for the
49° wedge). The double summation above is now ap-
proximately equal to

oo

Z expling a,Re(E3/2)] exp[—nq, o, Im(E%/?)] Z Ap.
P

Nyw=1
(40)
Adapting the analysis of Matthies and Steiner [35] to the

present situation, we define, for each word length n,,, the
quantities

0a(Ny) = - 1a In (z |Ap|) , Oq = nli:nooaa(nw),
w8 p w
(41)
1
Oc(ny) = p— In ZAP , Oc= nlianac(nw), (42)
wHts P w
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the sums over p including only the pseudo-orbits of word
length n,,. It is now easy to see that if the limits
0, and o, exist, the above series is absolutely conver-
gent if Im(E3/2) > o, and is conditionally convergent if
Im(E3/?) > o.. The results of calculations of ¢4 (n,,) and
0c(ny) as a function of n,, for the 26706 pseudo-orbits
of the 49° wedge are shown in Fig. 12. While o4(ny)
appears to approach a limit in the range of n, covered
by the calculations, o.(n,) does not. Since o, =~ 0.24,
we conclude that the pseudo-orbit expansion does not
converge absolutely for real E. Nevertheless, there is an
indication that the series may be conditionally conver-
gent for real E since o.(n, ) remains negative over the
range of n,, in the figure.

What happens if the truncated pseudo-orbit expansion
is combined with the functional equation? The dotted
curve in Fig. 11 shows the left-hand side of Eq. (35) cal-
culated as a function of energy taking into account 26706
pseudo-orbits of the 49° wedge having word length < 19.
The agreement between the zeros of this curve and the
exact energy eigenvalues is not as good as was obtained
from the product form using a comparable truncation.
In fact, if the scale is expanded one sees that the dotted
curve puts two extra zeros near the fourth eigenvalue and
two more extra zeros between the ninth and tenth eigen-
values. At higher energies than those shown in the figure,
the pseudo-orbit expansion misses some zeros completely
(in pairs). A similar calculation carried out by Sieber
and Steiner [12] for the hyperbola billiard using 59370
pseudo-orbits appears to be of somewhat better accu-
racy, although it misses completely the 30th and 31st
eigenvalues.

It should be mentioned that results of pseudo-orbit ex-
pansions for the 60° wedge are not presented here be-
cause of the existence, at this special angle, of numerous
“vertex orbits”—primitive periodic orbits in which the
billiard goes directly into the vertex of the wedge. The
problem posed by the vertex orbits (described in some
detail in paper I) is that they are not characterized by
unique sequences of T’s and V’s. This difficulty disap-
pears at wedge angles of, for example, 59.9° and 60.1°,
since for these angles all the primitive periodic orbits are
uniquely characterized. It would be interesting to carry
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FIG. 12. Calculations for the 49° wedge of 0.(nw) and
0c(nw), defined in Eq. (41) and Eq. (42), as a function of n,.
The upper curve is 0q(nw), the lower curve oc(nw).
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out calculations for these two wedge angles and compare
the results, but this has not been done so far.

D. The Riemann-Siegel look-alike equation

The unknown effect of sharply truncating the pseudo-
orbit expansion is neatly avoided by the Riemann-Siegel
look-alike equation. Keating [21] has shown that when
Z(E), in the form of Egs. (36)—(38), is required to satisfy
the functional equation, Eq. (34), the contributions to
the sum at energy E from pseudo-orbits with periods
greater than whdrr(E) are related to the contributions
from those with periods less than 7hdrr(E). As a result,

the approximate energy eigenvalues are given by the roots .

of the equation,

Req1+ Y AnexpliSy(E)/h—inNrr(E)] 3 =0,
(TnS"TRS)
(43)

which is known as the Riemann-Siegel look-alike equa-
tion [20,21]. In this equation, the sum over pseudo-orbits
n is subject to the requirement that the period of the nth
pseudo-orbit satisfies

Tn(E) < Tgrs = whdrr(E). (44)

In a more recent paper, Berry and Keating [22] have
reexamined and extended the theory of the dynamical ¢
function in analogy with the Riemann ¢ function. By car-
rying out an exact analytic continuation of the semiclas-
sical functional determinant in the complex variable 71,
they have derived a new formula for the semiclassical en-
ergy eigenvalues similar in form to Eq. (43) but with each
term multiplied by a factor involving the complementary
error function erfc(z,). The quantity z, corresponding
to the nth pseudo-orbit depends on the action S, (F) and
derivatives of Nrp(E) with respect to A™'. It also de-
pends on a parameter K, the value of which determines
how rapidly the pseudo-orbits enter the sum as a function
of the energy E. The net effect of this new formulation
is to bring about a smoothing of the Riemann-Siegel cut-
off defined in Eq. (44). For given E, the center of the
smoothing occurs at the pseudo-orbits whose periods are
T.(E) = whdrr(E). Further details of this approach are
given in Egs. (70)—(73) of Berry and Keating’s paper [22].

The results of calculations for the 49° wedge are shown
in Fig. 13. The dotted curve shows the left-hand side of
the Riemann-Siegel equation plotted against Edrr(E)/3
over the range of the first 46 energy eigenvalues. The
solid dots in the figure are the positions of the exact
eigenvalues of the Schrédinger equation. The calculation
included 26706 pseudo-orbits having word length < 19.
In the same figure the solid curve is the result of the
Berry-Keating smoothed version with K = 50, employing
the same pseudo-orbits. [This calculation was restricted
to Ao(E,h,K) given in Berry and Keating’s Eq. (72).]
The two curves are close to each other, but a careful ex-
amination shows that the solid curve has smoothed away
the small discontinuities of the dotted curve associated
with the abrupt entrance of new orbits satisfying Eq. (44)
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FIG. 13. Calculations for the 49° wedge of the left-hand
side of the Riemann-Siegel look-alike equation, Eq. (43), as a
function of Edrr(F)/3, with and without smoothing. Both
curves contained 26706 pseudo-orbits having word length
< 19. The solid curve is the result for the Berry-Keating
formulation employing erfc(zn,) with K = 50. The dashed
curve is the result for the unsmoothed Riemann-Siegel look-
alike equation. The solid circles indicate the positions of the
exact energy eigenvalues.

as the energy is increased. However, the Berry-Keating
smoothed curve does not miss any eigenvalues or intro-
duce any spurious ones over the range of the first hundred
eigenvalues, unlike the dotted curve in the figure, which
misses the 21st and 22nd eigenvalues and many pairs
of eigenvalues thereafter. We conclude that the Berry-
Keating smoothed version of the Riemann-Siegal look-
alike equation is successful in determining the first hun-
dred semiclassical energy eigenvalues of the 49° wedge.

E. Cycle expansions

Cycle expansions have been proposed by Cvitanovié
and co-workers [36-39, 7] as a way of expressing the dy-
namical ¢ function in a properly convergent form. The
key idea is to expand the { product of Eq. (32) into con-
tributions from a relatively small number of fundamental
cycles, which are expected to give the dominant contri-
butions, plus curvature corrections which are expected to
become exponentially small with increasing word length
n. In order that a cycle expansion be effective for a par-
ticular system, the symbolic dynamics must be complete
(i.e., there is a 1-1 correspondence between the primitive
periodic orbits of the classical system and every unique
sequence of symbols, excluding repetitions, cyclic permu-
tations, and time-reversed sequences), or, alternatively,
the pruning rules must be known. If the symbolic dy-
namics is not complete and the pruning rules are not
known, then it may not be possible to recast the cycle
expansion in a form that converges any better than the
Gutzwiller trace formula or the unexpanded ¢ product.

In the case of the 49° and 60° wedges, the pruning
rules are not completely known at the present time, al-
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though some elements of the pruning grammar have been
discovered [40]. Nevertheless, it is of interest to show the
outcome of a calculation for the 49° wedge which included
162 fundamental cycles and 886 curvature corrections of
the form t. = t; — tjty. The modulus of the resulting
¢ function, |Z(E)|, calculated as a function of the en-
ergy, is shown as the dotted curve in Fig. 14. The solid
curve in the figure is | Z(FE)| calculated from the product
form, Eq. (32), with 1048 primitive periodic orbits hav-
ing word length < 19. (This is the same curve as in Fig.
10.) As usual, the abscissa in the figure is taken to be
Edrr(E)/3, and the triangles indicate the positions of
the exact eigenvalues of the Schréodinger equation. Com-
paring the two curves we see that the cycle expansion
does not give as good results as the simple product form.
(See, for example, the region of the eighth, ninth, and
tenth eigenvalues.)

One can also ask whether better results will be ob-
tained by making use of the functional equation. To
study this we have calculated the left-hand side of
Eq. (35) as a function of energy for the 49° wedge, with
Z(E) calculated as described in the preceding paragraph.
The results were found to be considerably improved, but
are less satisfactory than the solid curve in Fig. 11 [in
which Z(FE) is the simple product over 1048 primitive
periodic orbits]. For example, we found that the cycle ex-
pansion calculation completely misses the 21st and 22nd
energy eigenvalues. The anisotropic Kepler problem pro-
vides an interesting contrast to this situation since its
symbolic dynamics are good, being characterized by a
single pruning rule. When its cycle expansion is com-
bined with the functional equation, Tanner and Wintgen
and co-workers [5, 6] showed that Eq. (35) gives excellent
values for the lowest 30 energy eigenvalues. The poor re-
sults we have obtained for the 49° wedge, together with

|Z(E)]

e
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AbL A AL & L A

E dw(E)/3

FIG. 14. Comparison of the product form of |Z(E)| with
the results of a cycle expansion for |Z(E)| for the 49° wedge.
Solid curve: the product form, Eq. (32), calculated with 1048
primitive periodic orbits with word length < 19. Dotted
curve: a cycle expansion consisting of 162 fundamental cycles
and 886 curvature corrections of the form t. = t; — t;tx. The
triangles show the positions of the exact energy eigenvalues
of the Schrédinger equation.
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the excellent results for the anisotropic Kepler problem,
show the importance of knowing the pruning rules and
formulating an appropriate cycle expansion along with
the functional equation. This is currently being investi-
gated [40].

F. Expansion in irreducible orbits

There is a puzzling feature of the Gutzwiller trace for-
mula and its reformulation as a { product which has not
so far been mentioned. The uncertainty principle tells
us that it is impossible to resolve the details of the mo-
tion of a quantum system on a scale less than that of a
Planck cell—a phase space volume of (27h)f, where f
is the number of degrees of freedom of the system. The
trace formula evidently ignores this fact since it consists
of a sum over all the periodic orbits of the classical sys-
tem, and while the primitive periodic orbits with short
periods or actions yield the “coarse” features of the classi-
cal motion, the orbits having longer periods are expected
to describe refinements of that motion on smaller and
smaller scales. One wonders, therefore, why there is not
a natural cutoff to the periodic orbit sum or the ¢ prod-
uct, which would, of course, depend on the energy of the
system.

Recent work by Bogomolny [41, 23, 24], based on a
quantum Poincaré surface of section, leads in a natu-
ral way to a truncation of the ¢ product at precisely the
point at which the details of the classical periodic orbits
become comparable with the size of a Planck cell. Fun-
damental to this approach is the concept of an irreducible
orbit, defined as one in which the classical trajectory does
not pass more than once through any Planck cell in the
accessible part of the chosen Poincaré surface of section.
The net result of this theory is an expansion of the dy-
namical ¢ function in the form of a Dirichlet series con-
sisting of products of the irreducible orbits, the number
depending on the number of Planck cells on the Poincaré
surface of section. Very nearly the same result will be
given by taking Z(FE) to be the naive product [6] over
the irreducible orbits up to the word length correspond-
ing to the number of Planck cells.

Without going into greater detail, we present here, for
the sake of comparison with the approaches described
above, the results of a calculation with Z(FE) taken to be
the naive product over the irreducible orbits up to word
length n < 16. The Poincaré surface of section is taken
to be the straight line along the tilted wall of the wedge.
A primitive periodic orbit of word length n crosses this
line (in a given direction) exactly n times in one period.
A description using four-symbol cells [23] corresponds to
2% = 16 Planck cells on the Poincaré surface of section
and contains 179 irreducible orbits if none of them are
pruned. However, in the case of the 49° wedge, only
16 of these irreducible orbits exist. It is interesting to
calculate Z(FE) as the hopelessly naive product over these
16 irreducible orbits and find the zeros of the function
Re[Z(FE) exp (—inNytr(E))] plotted against Edrr(E)/3.
The result of doing this for the 49° wedge is shown as the
dashed curve in Fig. 15. For the sake of comparison, the
solid curve corresponds to Z(FE) consisting of a product
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FIG. 15. Comparison between the approach of Bogomolny
and calculations employing the functional equation for the
49° wedge. Dashed curve: Z(FE) calculated as the simple
product containing only the 16 irreducible orbits that exist
for word length n < 16. Solid curve: Z(FE) calculated as
the product of the 363 primitive periodic orbits that exist
for word length » < 16. In both cases what is plotted is
Re{Z(FE) exp|—inNtr(FE)|} against Edrr(E)/3. The posi-
tions of the exact eigenvalues of the Schrédinger equation are
indicated by the solid circles.

over the 363 primitive periodic-orbits that exist up to
code length 16. It may be seen that for both curves the
zeros are very close to the positions of the exact energy
eigenvalues.

VIII. SUMMARY AND DISCUSSION

The main objective of the present investigation was
to study a number of different ways of calculating ap-
proximate energy eigenvalues for the wedge billiard using
periodic-orbit theory. The results, taken in conjunction
with the results of similar calculations for the anisotropic
Kepler problem, the model of a particle moving on a sur-
face of constant negative curvature, and the hyperbola
billiard, may help to establish which quantization rule
gives the best predictions.

The various methods may be compared by calculat-
ing the deviations of the lowest 30 semiclassical ener-
gies from the exact eigenvalues of the Schrédinger equa-
tion. The results for the 60° wedge are shown in Table

I. With E = Edyp(E)/3, the first column of numbers in
the table gives the mean deviation (E; — Eg*>t), while
the second column gives the root-mean-square deviation
((E; — Egxet)?)1/2_ The final column states the num-
ber of energy eigenvalues among the lowest 30 that were
used in these calculations, since two quantization schemes
did not locate all the eigenvalues unambiguously. The
straight Thomas-Fermi predictions (without the oscilla-
tory corrections) provide a “worst case” value for the
rms deviation against which the other calculations may
be compared. A clear winner for the 60° wedge is the cal-
culation of the zeros of Re{exp[—in Ntr(F)Z(E)} where
Z(E) is the simple ¢ product with 1621 primitive peri-
odic orbits. Not far behind is the staircase quantization
scheme which also gives very good results for the lowest
30 energy eigenvalues.

 Similar results for the 49° wedge are shown in Table II.
Because the special “vertex orbits” of the 60° wedge do
not exist in this case, there is no difficulty in carrying out
the various expansions of the dynamical ¢ function in the
form of a Dirichlet series. Here too the straight Thomas-
Fermi quantization Nyg(E;) = j —1/2 provides a “worst
case” value with which to compare the rms deviation.
Among the quantization schemes that predict all of the
lowest 30 energy eigenvalues, without introducing any
spurious ones, the best results are given by Bogomolny’s
approach—the hopelessly naive product over the 16 irre-
ducible orbits corresponding to 4-symbol cells, together
with the functional equation. Almost as good, however,
are the results obtained using the merely naive product
over 363 or 1048 primitive periodic orbits together with
the functional equation.

Our study of various quantization schemes for the
wedge billiard supports the conclusion reached by Tanner
and Wintgen [6] on the basis of their recent investigation
of the anisotropic Kepler problem. They found that the
best results were obtained by the Bogomolny approach
employing 3-symbol cells, with the straight { product
plus the functional equation being nearly as good. In
the anisotropic Kepler problem only one orbit is pruned,
in contrast to the extensive pruning that occurs for the
wedge billiard. It appears from our results that even
when the pruning is severe, the Bogomolny approach
with a small number of irreducible periodic orbits still
gives very good results for the approximate energy eigen-
values. Thus, our results in conjunction with those of

TABLE I. Comparison of the mean deviation and the root-mean-square deviation of the calcu-
lated energy eigenvalues from the exact eigenvalues of the Schrédinger equation for the 60° wedge.
Fewer than 30 eigenvalues were used in two cases because the quantization schemes did not unam-
biguously locate all the eigenvalues. Except for the Thomas-Fermi energy levels (which require no
periodic orbits for their calculation), each quantization scheme employed 1621 primitive periodic

orbits. Note that E = Edrr(E)/3.

Quantization scheme Figure (B; — Egxact) ((B; — Egract)?y1/2 Number of
eigenvalues
Gutzwiller sum 5 -0.019 0.107 27
Thomas-Fermi 8 0.085 0.224 30
Staircase quantization 8 -0.108 0.058 30
Z(F) product form 9 -0.004 0.121 25
Z(E) product & func. rel. -0.031 0.040 30
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TABLE II.

Comparison of the mean deviation and the root-mean-square deviation of the calculated energy eigenvalues

from the exact eigenvalues of the Schrédinger equation for the 49° wedge. For certain calculations, fewer than 30 eigenvalues
were used because the quantization scheme did not unambiguously locate all the eigenvalues. The values in parentheses give
the number of primitive periodic orbits or pseudo-orbits used in the calculations. Note that £ = Edrr(E)/3.

Quantization scheme Figure (B; — Egxact) ((B; — Egxect)?)1/2 Number of
eigenvalues
Gutzwiller sum (1048) 4 0.077 0.152 29
Thomas-Fermi (0) 0.014 0.333 30
Staircase quantization (1048) -0.284 0.215 30
Z(E) product form (1048) 10 0.072 0.118 24
Z(FE) product & func. rel. (1048) 11 0.029 0.113 30
Z(E) pseudo orbits & func. rel. (26706%) 11 0.046 0.126 30
Riemann-Siegel look-alike (26706%) 13 0.014 0.104 20
Berry-Keating erfc, K=50 (26706%) 13 0.028 0.142 30
Quantum PSOS (16 irreducible)® 15 0.017 0.100 30
Z(E) product & func. rel. (363)° 15 0.028 0.109 30

2All pseudo-orbits with word length < 19.
PThere are 16 irreducible orbits with word length < 16.

“There are 363 primitive periodic orbits with word length < 16.

Tanner and Wintgen indicate that the product form of
Z(E) plus the functional equation performs better than
any of the approaches which express Z(FE) as a Dirichlet
series. It is not at all clear why this should be so.
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